ClimSim-Online: A Large Multi-Scale Dataset and Framework for Hybrid Physics-ML Climate Emulation
Sungduk Yu, Zeyuan Hu, Akshay Subramaniam, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus C. Will, Gunnar Behrens, Julius J. M. Busecke, Nora Loose, Charles I. Stern, Tom Beucler, Bryce Harrop, Helge Heuer, Benjamin R. Hillman, Andrea Jenney, Nana Liu, Alistair White, Tian Zheng, Zhiming Kuang, Fiaz Ahmed, Elizabeth Barnes, Noah D. Brenowitz, Christopher Bretherton, Veronika Eyring, Savannah Ferretti, Nicholas Lutsko, Pierre Gentine, Stephan Mandt, J. David Neelin, Rose Yu, Laure Zanna, Nathan Urban, Janni Yuval, Ryan Abernathey, Pierre Baldi, Wayne Chuang, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Po-Lun Ma, Sara Shamekh, Guang Zhang, Michael Pritchard
Published in Journal of Machine Learning Research, 2025
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints, leading to inaccuracies in representing critical processes like thunderstorms that occur on the sub-resolution scale. Hybrid methods combining physics with machine learning (ML) offer faster, higher fidelity climate simulations by outsourcing compute-hungry, high-resolution simulations to ML emulators. However, these hybrid ML-physics simulations require domain-specific data and workflows that have been inaccessible to many ML experts. As an extension of the ClimSim dataset (Yu et al., 2024), we present ClimSim-Online, which also includes an end-to-end workflow for developing hybrid ML-physics simulators…. Read more